MAX materials and MXene materials are new two-dimensional materials who have attracted much attention in recent years, with excellent physical, chemical, and mechanical properties, and have shown broad application prospects in numerous fields. The following is a comprehensive introduction to the properties, applications, and development trends of MAX and MXene materials.
What is MAX material?
MAX phase material is really a layered carbon nitride inorganic non-metallic material consisting of M, A, X elements in the periodic table, collectively called “MAX phase”. M represents transition metal elements, like titanium, zirconium, hafnium, etc., A represents the primary group elements, including aluminum, silicon, germanium, etc., X represents carbon or nitrogen. MAX-phase materials, each atomic layer is composed of M, A, X, the three components of the alternating composition arrangement, with hexagonal lattice structure. Because of their electrical conductivity of metal and high strength, high-temperature resistance and corrosion resistance of structural ceramics, these are widely used in high-temperature structural materials, high-temperature antioxidant coatings, high-temperature lubricants, electromagnetic shielding along with other fields.
Properties of MAX material
MAX material is actually a new type of layered carbon nitride inorganic non-metallic material using the conductive and thermal conductive qualities of metal, consisting of three elements using the molecular formula of Mn 1AXn (n=1, 2 or 3), where M refers back to the transition metal, A means the main-group elements, and X refers back to the elements of C and/or N. The MXene material is a graphene-like structure obtained by the MAX phase treatment with two-dimensional transition metal carbides, nitrides, or carbon-nitrides. Max Phase material are novel two-dimensional nanomaterials made from carbon, nitrogen, oxygen, and halogens.
Uses of MAX materials
(1) Structural materials: the excellent physical properties of MAX materials get them to have an array of applications in structural materials. As an example, Ti3SiC2 is a kind of MAX material with good high-temperature performance and oxidation resistance, which can be used to manufacture high-temperature furnaces and aero-engine components.
(2) Functional materials: Besides structural materials, MAX materials can also be used in functional materials. For example, some MAX materials have good electromagnetic shielding properties and conductivity and can be used to manufacture electromagnetic shielding covers, coatings, etc. Furthermore, some MAX materials also provide better photocatalytic properties, and electrochemical properties can be utilized in photocatalytic and electrochemical reactions.
(3) Energy materials: some MAX materials have better ionic conductivity and electrochemical properties, which may be found in energy materials. For example, K4(MP4)(P4) is one of the MAX materials rich in ionic conductivity and electrochemical activity, which can be used a raw material to produce solid-state electrolyte materials and electrochemical energy storage devices.
What are MXene materials?
MXene materials certainly are a new type of two-dimensional nanomaterials obtained by MAX phase treatment, similar to the structure of graphene. The top of MXene materials can connect with more functional atoms and molecules, along with a high specific surface area, good chemical stability, biocompatibility, and tunable physical properties, etc, characterize them. The preparation strategies for MXene materials usually include the etching therapy for the MAX phase and the self-templating method, etc. By adjusting the chemical composition and structure of MXene materials, the tuning of physical properties such as electrical conductivity, magnetism and optics could be realized.
Properties of MXene materials
MXene materials certainly are a new form of two-dimensional transition metal carbide or nitride materials comprising metal and carbon or nitrogen elements. These materials have excellent physical properties, such as high electrical conductivity, high elasticity, good oxidation, and corrosion resistance, etc., along with good chemical stability and the cabability to maintain high strength and stability at high temperatures.
Uses of MXene materials
(1) Energy storage and conversion: MXene materials have excellent electrochemical properties and ionic conductivity and they are popular in energy storage and conversion. As an example, MXene materials can be used electrode materials in supercapacitors and lithium-ion batteries, improving electrode energy density and charge/discharge speed. Furthermore, MXene materials can also be used as catalysts in fuel cells to improve the activity and stability of the catalyst.
(2) Electromagnetic protection: MXene materials have good electromagnetic shielding performance, and conductivity may be used in electromagnetic protection. For instance, MXene materials bring electromagnetic shielding coatings, electromagnetic shielding cloth, along with other applications in electronic products and personal protection, improving the effectiveness and stability of electromagnetic protection.
(3) Sensing and detection: MXene materials have good sensitivity and responsiveness and may be used in sensing and detection. As an example, MXene materials bring gas sensors in environmental monitoring, which could realize high sensitivity and selectivity detection of gases. Furthermore, MXene materials can also be used as biosensors in medical diagnostics along with other fields.
Development trend of MAX and MXene Materials
As new 2D materials, MAX and MXene materials have excellent performance and application prospects. Down the road, using the continuous progress of technology and science as well as the increasing demand for applications, the preparation technology, performance optimization, and application areas of MAX and MXene materials will likely be further expanded and improved. These aspects could become the focus of future research and development direction:
Preparation technology: MAX and MXene materials are mainly prepared by chemical vapor deposition, physical vapor deposition and liquid phase synthesis. In the future, new preparation technologies and techniques can be further explored to realize a more efficient, energy-saving and eco friendly preparation process.
Optimization of performance: The performance of MAX and MXene materials has already been high, there is however still room for further optimization. Down the road, the composition, structure, surface treatment as well as other aspects of the content may be studied and improved comprehensive to improve the material’s performance and stability.
Application areas: MAX materials and MXene materials happen to be widely used in numerous fields, but there are still many potential application areas to be explored. In the future, they could be further expanded, such as in artificial intelligence, biomedicine, environmental protection as well as other fields.
In summary, MAX materials and MXene materials, as new two-dimensional materials with excellent physical, chemical and mechanical properties, show an extensive application prospect in many fields. Using the continuous progress of technology and science as well as the continuous improvement of application demand, the preparation technology, performance optimization and application areas of MAX and MXene materials will likely be further expanded and improved.
MAX and MXene Materials Supplier
TRUNNANO Luoyang Trunnano Tech Co., Ltd supply high purity and super fine MAX phase powders, such as Ti3AlC2, Ti2AlC, Ti3SiC2, V2AlC, Ti2SnC, Mo3AlC2, Nb2AlC, V4AlC3, Mo2Ga2C, Cr2AlC, Ta2AlC, Ta4AlC3, Ti3AlCN, Ti2AlN, Ti4AlN3, Nb4AlC3, etc. Send us an email or click on the needed products to send an inquiry.